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Abstract

An arbitrarily close return to a previous initial state of
the Universe, such as is predicted by the Poincaré recurrence
theorem, cannot occur in a closed universe governed by general
relativity. The significance of this result for cosmology and
thermodynamics is pointed out.

"The thing that hath been, it is that which shall be; and that
which is done is that which shall be done: and there is no new
thing under the sun."

—Ecclesiastes 1:9

"God forbid that we should believe this. For Christ died once for
our sins, and rising again, dies no more."

—St. Augustine (City of God, XII, ch. 13)

*Work supported by the National Science Foundation under grant number
PHY-77-15191



The idea that history repeats itself - that every state
of the Universe has occurred before and will occur again ad in-
finitum - is a concept which originated thousands of years ago
and in the form of the Poincaré cycle and the "cyclic" universe,
still plays an important role in fundamental physics. This notion
of an "eternal return" will be studied in this paper in the con-
text of general relativity, and it will be shown that in a closed
universe, no arbitrarily close (or exact) return to a previous
state of the universe is possible, provided certain very general
restrictions on the matter tensor and global causal structure
hold. This result is in stark contrast to the situation in

1,2 that for almost all

classical mechanics: Poincaré showed
initial states, any mechanical system with a finite number of
degrees of freedom, finite energy, and constrained to move within
a finite box must necessarily return arbitrarily closely and
infinitely often to almost every previous state of the system.
The reason for '"no return" in general relativity and "eternal
return" in classical mechanics is that in general relativity,
singularities intervene to prevent recurrence. General relativistic
closed universes are thought to begin and end in singularities of
infinite curvature, and these singularities force time in general
relativity to be linear rather than cyclic.

The notions of recurrence vs no-return constitute what
Holton 5y calls a thema-antithema pair. Briefly, these are

pairs of opposite fundamental concepts which form the basic

framework of all scientific models. Other examples are absolute



vs. relative, the plenum vs. the void, atomism vs. the continuum,
and determinism vs. indeterminism. Holton argues that although
scientific theories change, the fundamental thema (whose number

he estimates h-to be less than 100) remain in different guises

and different proportions in suceeding theories. This is certainly
true of the recurfence/no—return couple. A brief history of the
eternal return concept in philosophy and science will be given in
section 2, with emphasis on the versions of this idea which have
strong parallels in modern science. Section 3 will give a precise
statement of the general relativistic no-return theorem, together
with a brief explanation of the meaning of the terms used in the
theorem. The proof of the theorem will be given in section 4.

1
2,5,6,7 Poincare

As pointed out by numerous authors
recurrence is a major stumbling block to the definition of
entropy, a function of the state of the system which never de-
creases, in terms of the fundamental microscopic variables of the
system. Hitherto the increase of an "entropy" defined by such
variables has been obtained (not very successfully) by such tricks
as "coarse-graining" 2’8; an ad hoc addition of randomness to the
system 1in the form of a postulate of "molecular chaos" or "random

phases";2’5 9,10

or by taking the thermodynamic limit. It will be
argued in section 5 that the results of this paper may make such
subterfuges unnecessary, and that there is a deep connection be-
tween the increase of gravitational field entropy - which does not
seem to require the above tricks - and the increase of matter
entropy. The paper will conclude with a discussion of the

significance of the no-return theorem for cosmology.



UF

Brief History of the Eternal Return Idea

The concept of the eternal return - the idea that
time is fundamentally cyclic - apparently played a key role
in the cosmological thought of mankind as far back as 6,500 B.C.
(11, p. 332). Scientific thought in this period was based on
such common sense phenomena as the cycle of the seasons, the
rhythm of human life from birth to adulthood to death, and the
numerous periodicities in the heavens such as the phases of the
moon, the annual motion of the sun through the constellations,
and the periodic near return of the planets (Gods: see 11, p. 4)
to previous positions in the sky. Under these circumstances a
cyclic notion of time is more natural than rectilinear time, and
it was cyclic time that dominated the thought of the so-called
primitive peoples. 12,13, 14
The early agricultural civilizations - Sumer, Babylon,
12, p. 44 15, p.360) Indian,(15, p. 353), Mayan, (13, p. 88), and
Shang-Chou, (15, P. 358) - retained and elaborated the notion of
cyclic time. The Babylonians, for example, based their concept
of time on the periodicities of the planets. In their view, the
lifetime of the universe, or Great Year, lasts about 432,000 years.
The summer of this Great Year would be marked by the conjunction
of all the planets in Cancer, and would be accompanied by a
universal conflagration; the winter would occur when all planets
have a conjunction in Capricorn, and this would result in a universal
flood. The cycle then repeats and in some accounts the next cycle

is an exact reproduction of the preceding ones. (15, p. 362). The

ancient Indians (Hindus, Buddhists, Jains) extended this basic



structure of a single Great Year into an entire hierarchy of
Great Years. For instance, a destruction and re-creation of
individual forms and creatures (but not of the basic substance

of the world) occurred every Kalpa or day of Brahma. Each

day of Brahma had a duration of about 4 billion years. The
Elements themselves together with all forms undergo a dissolution
into Pure Spirit which then incarnates itself back into matter

12

every lifetime of Brahma, or about 311 x 10 years.d5, p.363;

16 . 354). The Brahma lifetime is the longest cycle in the
Indian system, and the cycle is repeated ad infinitum.

Among the Greeks, the Stoics were the most fervent
believers in the eternal return. They held (1A, p. 47) that
all objects in the universe were bound together in an absolutely
determinate web of actions and reactions, and that this determinism
led to a precise recurrence of all events. That is, no event is
unique and occurs once and for all (for example the condemnation
and death of Socrates) but rather every event has occurred, occurs,
and will occur, perpetually; the same individuals have appeared,
appear, and reappear in every return of the cycle. Cosmic duration

is thus repetition and anakuklosis, eternal return. (13, p. 89)

This Stoic idea of palingenesia - that is, the reappearance

of the same men in each cycle (12, p. 47), carried the idea of the
eternal return to its logical extreme, and went much further than
the above-mentioned earlier thinkers were willing to go, or indeed
Aristotle and Plato were willing to go.

Aristotle was intrigued by the notion of palingenesia.

He noted that if it were true it would obscure the usual idea of



before and after, for it would imply (17; 14, p. 46) that he
himself was living as much before the fall of Troy as after,
since the Trojan War would be re-enacted and Troy would fall
again. However, although he accepted the cycles, he was re-
luctant to accept the exact identity of events in each cycle,

(12, p. 48).

arguing that the identity was only one of a kind
Plato's cosmology was also cyclic, with a periodic destruction
and re-creation of the universe in conjunction with various

astronomical events 18’19.

Indeed, it is through Plato's
writings that the notion of the Great Year entered later
Western thought. However, scholars disagree as to whether
his concept of the cycles went to the extreme of palingenesia

(12, b. 48; 14

, P. 45). The eternal return concept came to
dominate thought in the pre-Christian, later Roman empire.
It was also prominent on the other side of the oikoumene in
this period, namely in Han China. As Neédham has pointed out
(20,‘p. 29), the popular religious Taoism of the Han was
millenniarist and apocalyptic; the Great Peace was clearly in
the future as well as the past. In the Canon of the Great Peace
(written between 400 B.C. and 200 A.D.) is found a theory of
cycles which issued fresh from chaos and then fell slowly until
the day of doom.

As the epigram to this paper suggests, the Christian

world view was hostile to the eternal return idea; in the section

of the City of God from which the selection quoted is taken, St.

Augustine was criticizing the Stoic recurrence concept, arguing

that Christian philosophy (and its Hebrew predecessor) required



a non-cyclic linear concept of Time. God created the world once,
Christ died once, and will rise again once. With the triumph of
Christianity, the notion of linear time became dominent over

cyclic time in the West until the rise of modern science, though

a few Medieval scholars, such as Bartholomaeus Anglicus (1230),

Siger of Bruhant (1270) and Pietro d'Acono (1300), were willing

to at least entertain the notion of an eternal return. 21 In
Medieval China, however, the Neo-Confucian school, which flourished
in the 11th through 13th centuries of our era and which was in-
fluenced both by Buddhist ideas on recurrence and the above-mentioned
ideas of ancient Taoism, accepted the idea that the universe passed
(20, pp.6,22).

For instance, the Sung scholar Shen Kua (f. 1050) discussed re-
22

through alternating cycles of construction and dissolution.
current world-catastrophes (°0* p. 22; 22, pp. 598 ff and 603 ff),
and later the Ming Scholar Tung Ku held that a world-period had a
beginning, but not the endless chain of all world periods (20, p. 63
22, p. 406). Needham has argued (20, p. 50) that in fact the linear
notion of time dominated over the cyclic view in later Chinese
thought, but other scholars disagree.23 However, there is no
gquestion that linearity dominated in Christian thought, and many

16’24) have contended that this notion of time played

scholars (e.g.
a key role in the rise of modern science.

Modern science in turn led to a revival of cyclic time.
The Newtonian world picture contained both cyclic and linear aspects
from the very beginning. Newton himself was worried that’his solar sys-

tem model - based on a linear (mathematical) time - was gravitationally

unstable in the long run, and to compensate for this instability he



suggested a cyclic process whereby the planets would be replaced
as they wére periodically perturbed from their orbits by the

gravitational action of other bodies. 7

Euler, Laplace, Lagrange
and others had shown by the beginning of the 19th century that the
solar system was in fact stable to first order, the gravitational
perturbations leading merely to a cyclic oscillation of the
planetary orbits. However, at about this time the debate on

the question of cyclic vs. linear shifted from astronomy to
geology and thermodynamics. (5, pP. 553). The problem in geology

was whether the internal heat of the earth could power geological
cycles indefinitely, or whether the earth would eventually cool to

a "state of Ice and Death", as J. Murray 26 put it in 1814. This
question in part stimulated research in thermodynamics (5, Section 14);
by the end of the 19th century, Kelvin and others (see 2 for a detailed
history) concluded on the basis of the newly formulated Second Law of
Thermodynamics that the Heat Death was inevitable, and hence a cyclic
notion of time was refuted. Kelvin 27 and Tait 28 indeed inferred
that the Second Law implied a creation of the universe.

Other physicists were unwilling to grant such unlimited
validity to the Second Law, arguing that the creation of the Universe
would violate the First Law of Thermodynamics.29 Thus somehow the
energy dissipated by thermodynamics processes must be periodically
reconcentrated into usable from. Rankine, for instance, suggested 30
that heat radiated into space would reach a sort of "ether wall" a
finite distance from the earth, at which the radiant heat’would be

totally reflected and reconcentrated into various "foci". (Rankine's

notion of "ether wall'" is strikingly similar to the idea of '"domain



boundary" which arises in spontaneous symmetry breaking in gauge

theories 31’32).

Thus the history of the Universe would be cyclic
in the long term.

Rankine was basically tyying to show that mechanics
and the Second Law were inconsistent. This was first shown in

33 mentioned

1
1890 by Poincare in his famous recurrence theorem
!
above. In its most general form Poincare's theorem can be proven
in any space X on which there is a one parameter map Tt from the
sets {U% of X into {IJ% and a measure s on X such that:
(1)’M(X) = 1 and (2)’ M(TtO(U)) = M (Tto

U C X and any to, t. In the application to classical mechanics,

.t (U)) for any
(1) is assured by requiring the space X to be the phase space of a
finite energy mechanical system in a finite box. If .« is the
density function o in phase space and Tt is the evolution operator
for the mechanical system (which is assumed to be Hamiltonian),
(2) then follows from Liouville's theorem: d/o/dt = 0. Thus the
classical mechanics of a finite system is inconsistent with the
Second Law; by Poincaré's theorem, almost all such systems must
return arbitrarily closely and infinitely often to almost all
previous initial states.

At about the same time Poincaré was developing his

34 and the German

theorem, the English philosopher H. Spencer
philosopher F. Nietzsche were atte@pting to make a scientific-

sounding argument for the eternal return. Nietzsche's argument
is worth repeating in detail because although it is non-rigorous

(to say the least!) it contains all the essential ideas which are



needed for a rigorous proof (given certain assumptions about
the evolution of the world-system), a proof which will be useful
in discussing the significance of the Theorem stated in the next
section. I shall follow the example of Nietzsche's sister and
omit those parts of his argument which I think are nonsense.
Nietzsche began his "proof" of eternal recurrence as
follows:
...we insist upon the fact that the world as a sum
of energy must not be regarded as unlimited - we for-
'bid ourselves the concept infinite energy, because
it seems incompatible with the concept energy (35, #5).
This is similar to the idea of energy in general relativity.
Only in asymptotically flat space where the total energy is
necessarily finite does the concept energy have a well-defined
meaning (37, p. 457). Nietzsche also argued that the universe
must be infinite in time:
We need not concern ourselves for one instant with
the hypothesis of a created world. The concept
"create" is today utterly indefinable and unrealisable;
it is but a word which hails from superstitious ages...
(%0, #1066).
He then contended that recurrence of all states followed from the
finiteness of energy (and space) by which he meant a finite
number of possible states of the universe, the infinity of elapsed
time, and a chance-like evolution:
If the universe may be conceived as a definite quantity

of energy, as a definite number of centers of energy, -
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and every other concept remains indefinite and therefore
useless, - it follows therefrom that the universe must
go through a calculable number of combinations in the
great game of chance which constitutes its existence.
In infinity, at some moment or other, every possible
combination must once have been realized; not only this,
but it must have been realized an infinite number of
times...(36, #1066). If all possible combinations and
relations of forces had not already been exhausted,
then an infinity would not yet lie behind us. Now since
infinite time must be assumed, no fresh possibility can
exist and everything must have appeared already, and
moreover an infinite number of times. (35’ #7). That
a state of equilibrium has never been reached, proves
that it is impossible. [But it must have been reached]
in spherical space (36, #1064). Only when we falsely
assume that space is unlimited, and that therefore
energy gradually becomes dissipated, can the final
state be an unproductive and lifeless one. (35, #8).
In the last section of this paper, it will be pointed
out that Nietzsche's world-model can be compared fairly closely
to a Markov process whose states must recur. Thus, granting
Nietzsche's assumptions (finite number of states, no creation
and chance-like evolution), his proof of recurrence is valid
when judged by the standards of philosophical (not mathematical)

rigor.
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Another 19th century thinker who considered the pro-
blem of recurrence was Boltzmann. Boltzmann originally hoped
to deduce irreversibility from the mechanics of atoms but he soon
realized such a deduction was impossible without using averaging tech-
niques. Under pressure from Planck's student Zermelo, who based his
arguments on Poincaré's theorem, Boltzmann suggested that the
Universe as a whole had no time direction, but individual
regions of it did, when by chance a large fluctuation from
equilibrium should produce a region with reduced entropy.
These reduced entropy regions would then evolve back to the
more probable state of maximum entropy, and the process would

(38’ 5, section 14.7).

repeat in accordance with Poincaré's theorem.
Once it became clear that a finite system of particles

would be recurrent and not irreversible in the long run, Planck

considered whether irreversibility could arise from a field theory

such as electromagnetism. The idea would be to derive irreversibility

from the interaction of a continuous field with the discrete

particles. Planck began a series of papers on this question in

1897, a series which culminated in his discovery of the quantum

theory of radiation in 1900. Boltzmann, however, pointed out that

if we regard the field as a system with an infinite number of

degrees of freedom, this would be analogous to a mechanical system

with an infinite number of molecules, and in either case we would

have an infinite Poincaré recurrence time; in either case we would

have irreversibility and long term agreement with the Second Law.

However, for the thermodynamics of fields in a confined space, it

is physically more appropriate to regard the field not as a con-
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tinuous quality governed by differential equations, but rather
as a large but finite number of "vector ether atoms" whose
equations of motion are obtained by replacing the usual
differential equations with finite difference equations. To

(39’ 5, section 14.8).

this system the recurrence theorem would apply
Most Twentieth century discussions of the eternal return

are based on the so-called oscillating closed universe model

developed in 1922 by A. Friedmann. 40 Friedmann himself was aware

of the cyclic nature of time in his solution, and suggested that

one could identify corresponding times in each cycle. However,

in the Friedmann model the radius of the Universe went to zero

at the beginning and the end of each cycle, and thus from a

strict mathematical standpoint the cycles were disjoined by a

singularity; they were not true "cycles." Tolman proved 41 in 1931

that such a discontinuity was inevitable at the beginning and end of

any isotropic and homogeneous closed universe with a physically

reasonable matter tensor. He argued h2

that this discontinuity

was merely an artifact of the high symmetry assumed, and in a
physically realist universe, the actual discontinuity would dis-
appear. He therefore assumed that the entropy would be conserved

in a passage through the singularity, and thus the thermodynamics

of a cycle would in part be determined by the history of a previous
cycle. Other relativists of the time by and large agreed with Tolman
as to the unreality of the singularity - see ref. 43 for more de-
tails.

With the advent of the Hawking - Penrose singularity

theorems in the 1960's, most relativists have accepted the reality
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of some sort of initial singularity - at least in classical
relativity. Some relativists have argued that quantum effects
could cause the universe to "bounce" at very high densities,
leading to cycles in the closed universe models. Wheeler, for

l
+ the physical constants

example, has until recently suggested
themselves are recycled at a "bounce." Thus Tolman's concept

of the cycles was analogous to the '"Day of Brahma" cycle in
Indian mythology, while Wheeler's resembled the "life of Brahma"
cycle. I shall now show that in classical relativity, the
singularity prevents recurrence, and in Section Y I shall argue

that if quantum effects do result in a "bounce", that some sort

of recurrence is probably inevitable.
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III., The No-Return Theorem

In order to prove that no two states of the Universe can
be identical or even arbitrarily close, we must first make
precise the notion of "close."™ This can be done by regarding

the set of all initial data as a Sobolev space WS, The global

topology of the spacetime (M,g) is S xR, where S is compact,
if the spacetime is globally hyperbolic. We choose some positive

definite metric e,y on M, and define a norm on WS by

” KIJ”m L pZ= 0 IS(IDP KIJ 'zdd ]% ’ (1)

(1

fn, X0z dUnll + X

where dg is the volume element induced on S by €ap? Dp is the
generalized pth covariant derivative with respect to some chosen
background metric Eab' and ' l is the norm induced by €.b (see
pp. 233-235 of 45 for more details). Two tensors will be "close"
if they are "“close" in the norm (1).

The No-return theorem will require four conditions on the
matter tensor. The first condition, the timelike convergence
condition (QS, p. 95), says roughly that zravitation is always
an attractive force. The other three conditions, which will
here be called (a), (b), and (c), are precisely stated on pages
254-255 of 45. Roughly stated, (a) says that the development
from a given set of initial data 1s locally unique; (b) says
that this unique development is locally stable; and (c) says

that the stress-energy tensor is a polynomial in the matter

fields, their first derivatives, and the spacetime metric.
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As discussed on page 255 of 5, these are physically reasonable
conditions to impose on the matter fields, though strictly
speaking, they are not necessary conditions. Any other conditions
which imply global Cauchy stability and uniqueness (in the sense
defined in Chapter 7 of QS) would be sufficient to prove the
Theorem below,

We shall also need two global conditions. The first, the
requirement of unique development from Cauchy surfaces (45’ p. 205),
says that Laplacean determinism holds on the spacetime. (It
is interesting that in general relativity, determinism implies
no-recurrence, whereas in the Stoic philosophy and classical
mechanics, determinism was held to imply recurrence.) The second,
the generic condition (45. p. 101) says that every causal
geodesic feels a tidal forces at least once in its history. As
this would be expected to be false only for a "measure-zero" set
of solutions to the Einstein equations,vthe generic condition in
the Theorem below is somewhat analogous to the "measure-zero"
qualifications in the Poincaré recurrence theorem. A closed
universe is defined to be a spacetime in which the Cauchy sur-
faces are compact. A spacetime that contains two disjoint spacelike

Cauchy surfaces which are isometric in their initial data is said

to be time periodic.

Theorem: If a spacetime (M,g) containing compact Cauchy surfaces

is uniquely developed from initial data on any of its Cauchy

surfaces, and if (M,g) also satisfies both the generic and the

timelike convergence conditions, then the spacetime cannot be time

periodic. Furthermore, if in addition the matter fields ¥ and
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/
their first derivatives “F satisfy conditions (a), (b), and (c),

then for any neighborhood U of any Cauchy surface Sl , there exists
/ /
a number € > 0 such that ”(h,'x,’\".“f’)—(hl,'x—l,ﬂf'f.’)ul)”5+a

> € for the initial data on any Cauchy surface S with U n S

empty. (€ depends on €ap gab’ and U , S and S1 are assumed space-
like.)
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V. Proof of the No-Return Theorem

Assume on the contrary that (M,g) is time periodic. By the
assumption of unique development, this implies there exists a
sequence of Cauchy surfaces S(t_n) ces S(to) . S(tn) with
the initial data on a given surface isometric to the initial
data on any other surface, and with J+(S(ti)) nJ (s(ty 4 1)
isometric to J+(S(tj)) N J_(S(tj+1)) for any i,j. Thus (M,g)
can be regarded as a covering space for a spacetime with topology
S X Sl. By the corollary on page 217 of u5, there will exist a
timelike curve Yi; of maximal length between any two of the
isometric Cauchy surfaces S(ti) and S(tj), and Yij will be
orthogonal to both. Consider the sequence of curves Y-1,1 Y-2,2 ’
e Y;n,n eeses Because S(to) is a Cauchy surface, each of these
curves intersects S(to) in exactly one point. Since S(to) is
compact, the sequence has a subsequence Y, which converges to a
timelike geodesic y . (Timelike since in the space S x Sl , we
can define y by a sequence of vectors normal to S(to) - the
vector at the future endpoint of Y, and tangent to Yn there.

This sequence of vectors has a subsequence which converges to a normal
of S(tg,) , and all convergent subsequences converge to a normal
to S(to). )

The geodesic y 1s past and future complete. To see this, we
first show that the lengths of the geodesic segments Yn must
diverge in both the past and future directions as n - « , For

)

since Y, is the maximal length geodesic segment between S(t_n

and S(tn), and if Y, converged to a finite length in either

direction, the future direction say, then we could construct a
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causal curve between S(t_n) and S(tn) of length greater than Y,
for n sufficiently large as follows. Every timelike geodesic

normal to S(to) reaches all S(t.) since these are Cauchy surfaces.

n
Define a timelike curve an(p) from any point p in S(to) by
extending the geodesic normal to S(ty) at p until it reaches S(t;)
at Py then move along the geodesic normal to S(tl) at Py until
this geodesic reaches S(t2), and so on until S(tn) is reached.
Since S(to) is compact, the length of a geodesic from S(to) to
S(tl) along a geodesic normal to S(t;) is bounded below by some
number L. Thus the length of a,(p) > n L, and so if the length
of Yo, did not diverge in the future direction as n = « , we
could replace y by [y, n J-(S(to))] Ul a(p={v,ns(te} )]
to obtain a causal curve of length greater than Y, between
S(t_n) and S(tn) for n sufficiently large. But this is impossible,
since by definition Yn is the maximal length curve between these
two Cauchy surfaces. By the continuity of length along arbitrarily
close continuous geodesic segments, this divergence in both time
direc%ions of the lengths of the Yn segments implies the geodesic
completeness of y .

Since y is geodesically complete, and since the generic and
the timelike convergence conditions hold, y must have a pair of
conjugate points - at points p and q, say - by Proposition 4.,4,2

45

of . By Proposition 7.24 of 46. the location of first conjugate
points varies continuously with the geodesic, and so there will
be points P, » 4, On Yn which are conjugate points on Yn and
converge to p, q. For n sufficiently large, P, +9, will be in

+ -
J (S(t rl)) nJ (S(t )). But y_is the maximal length causal curve
- n



19
between S(t_n) and S(tn). and so by Proposition 4,5.8 of 45,
it cannot have conjugate points in J+(S(t_n)) n J-(S(tn)).
(We could also obtain a contradiction by arguing as on page 270
of 45.) This contradiction shows that time periodic spacetimes
do not exist,
We shall now show that it is not possible to approach
arbitrarily closely to a previous initial state. The proof will
be a generalization of an argument by Fischer and Marsdenu7, who
showed that if one gets sufficiently close to a previous initial
data set of a Cauchy surface in empty space, then one can per-
form a coordinate transformation to obtain a time periodic
spacetime,
If there is no such € for some S with initial data (h, X, ¥, Afj),
then there will exist a sequence of Cauchy surfaces Sn with
initial data (hn ,xn , ,)‘;l . ’Y’; ) such that (hn 'xn ,ﬂf; ,"fn‘)
- (h,%
h,

,V,Y) as n = o , with Sn n U empty for all n, and

X, ,*) = (n,X,¥Y,P). Let (M,z) be the maximal

with (h
deveiopment of (ﬁ,iz.’¢lapﬁ. Now the topology of M and M is

S xR, so we let 1:S - M be an embeddineg inducing (3,52,55.5L3 .
By (a), (b), and (c), the Cauchy stability theorem (45' pp. 253,
255) holds, and this implies that there exists a sequence of
local diffeomorphisms Bl = M taking i to i and such that the
the corresponding mapping on the metrics F;(g) converges to g.
By the argument in Ebin (48, Proposition 6.17), using the
compactness of S, there is a subsequence of Fn that converges to

a local diffeomorphism F : M = M, and the domain of F is not in

U. However, (M,g) and (M,g) can be identified since F*(g) = g =g
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in a neighborhood of 1, and the maximal development is unique.

Thus (M,g) 1s time periodic, which is impossible,



21

V., Significance of the No-Return Theorem

One might think that any field theory in Euclidean space
would have a non-recurrence property similar to the one demon-
strated in the previous section, since a continuous field has
an infinite number of degrees of freedom. From a physical point
of view, this 1s not the case. It is not possible to make a
precise measurement of the field variables at every point, and
in practice a field restricted to a finite region S would be
approximated by dividing up S into a finite number of subregions,
and the field in each subregion replaced by its average value in
that subregion. Evolution would be via the differential field
equations, but one would compare the "average" values.

Comparing initial data sets via the Sobolev norm is closely
analogous to comparing the average values of the field variables
(and their derivatives) at one time with the average values at
another time. With the Sobolev norm, one essentially takes the
absolute square average value of the initial data over the
entire Cauchy surface rather than dividing up the Cauchy surface
into subregions; the Sobolev average 1s a coarser average. The

arbitrary metrics eab and ga in the Sobolev norm are analogous

b
to an arbitrary coordinate system with respect to which averages
are calculated. In the classical mechanics of fields in a finite
box, one can define a similar norm ” ” = [J‘l“?lzdgj% on the
classical field ¥ . The sum é‘_lll’“l’(l)u with "P(i) the 1th

i=

derivative of ﬁy , 1s essentially the same as the Sobolev norm,

This sum is a map f from the space of all values of the field
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and its first n derivatives intoIR. If the range of f is bounded
- as it must be if the solutions W are stable - then the
evolution of ¥ must result in accumulation points in the

range of f. An analogous accumulation is impossible in general
relativity, as tﬁe above theorem shows., What happens in general
relativity is that the range of f, so to speak, is not bounded

- singularities develop in spacetime (this follows from the
bs

hypotheses of the above theorem and Theorem 2 of , D. 266).,

This sort of singular behavior is typical of many non-linear
9,60

field theories ' , but in linear field theories such as

electromagnetism, the solutions are stable, hence bounded. For
example, the solutions to the Schrodinger equation in a finite
box must recur 3054 in the above average sense: for any initial
value ’v/(to) for the probability distribution and any €, there
exists a time t for which I W (t) - Af%to)“ < €,

Another argument for field theory recurrence in an average
sense is Boltzmann's method of replacing the differential field
equations by finite difference equations. As Boltzmann pointed
out, the solutions of these difference equations would have a
recurrence property.

This leads one to suspect that it might be possible to
prove a Poincarée theorem for the average values of linear
Hamiltonian classical fields and their first n derivatives.
Unfortunately, this will not be easy to do because of the
difficulty of defining the required invariant measure on the

initial data space. It is known , for instance,that a translation

invariant measure on a Hilbert space cannot give a finite value
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on a box in the Hilbert space. The best result to date on this
problem is the definition of an infinitesimally invariant
measure on the solution space to the two-dimensional Euler
equation.50

In a finite universe without singularities there should
be a finite number of physically distinguishable states (this
should also be true if the matter in the universe is in the
form of fields, for reasons stated at the beginning of this
section), I would expect that the states of such a universe would
evolve in general in a quasi-ergodic way56'67, though it is
impossible to prove this without a suitable measure. If the
evolution of the physically distinguishable states is iﬁdeed
quasi-ergodic, then in infinite time, every state would with
high probability occur an infinite number of times,

Another way to model the evolution of such a finite state,
always existing universe is by regarding the evolution as a

.4
finite discrete Markov chain 7

with stationary transition
probabilities. That is, we will sample the state of the Universe

at definite time intervals &t , and we will assume that the

state of the universe at time tj is determined by the previous
state at time t'—l and the probability matrix of going from this
previous state to any other state. If the universe has existed

for an infinite time, then with probability one the states of

the universe form a closed set (49, p. 384); that is, we may
consider without loss of generality the Markov chaln representing
the universe now to be irreducible (This is essentially Nietzsche's

argument that if the universe had a final state, it would have

reached it by now. It is also Birkhoff's postulate of metric
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transitivity 55'67). By Theorem 4 of ref. +0 (p. 392), it
follows that with probability one, all states recur in the
future. Thus if Nietzsche's "chance-like" evolution is assumed
to be Markovian, then his argument for recurrence is valid.

Similar arguments will imply some form of recurrence in
closed universes which avoid singularities by "bouncing" at
some small radius (Such behavior could of course occur only if
some of the conditions in the No-return Theorem are violated6l).
One could envisage the physical constants of the universe, such
as the elementary particle masses, the coupling constants, the
specific entropy per baryon, and so forth, changing in some
fashion at each bounce. These physical constants can be regarded
as additional variables in the initial data., If the number of
such constants is finite and if their range of variation is
finite, then in a finite universe one would expect a finite
number of physically distinguishable states. This implies
accumulation points in the state space with an infinite number
of boﬁnces; with quasi-ergodic or Markovian evolution,’we would
have recurrence of all states with high probability. Quantum
mechanical considerations do not substantially alter this
conclusion, so long as one requires the number of physically
distinguishable states to be finite.

It is of course possible to avoid the recurrence conclusion
by assuming that the range of variation of the physical constants
is not bounded, or that the universe, although closed, increases

. . . . . 1
its radius at maximum expansion with each bounce. (Tolman , for

example, argued that the monotone increase of entropy required a
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monotone increase of maximum radius at each bounce). However,

if the range of physical constant variation is not bounded, then
there would exist a sequence of cycles such that at least one
physical constant would diverge in the limit. I would regard

such a divergence as a singularity "at infinity”". If the maximum
radius increases monotonically with time, then with an infinite
number of bounces in the past, the sequences of values of the
maximum radius must have a limit point in the past. If its limiting
value 1s non-zero, then one must have recurrence in the pas%t,
though this "recurrence" may take the form of a gradual cessation
of change, as in the Eddington-Lemaitre universqu. If its 1limit-
ing value is zero, then the singularity has not really been
removed, it has just been placed at temporal infinity.

But the singularities in the single cycle closed universe can
also be regarded as at temporal infinity. In fact, both [ﬁ'ilne62
and Misner 3 have contended that because physical changes occur
with diverging rapidity (as measured in proper time) near a
singularity, the singularity should be regarded as occurring at

57

temporal infinity as measured in physical time. 2Zarrow and myself
6L

have pointed out that extrinsic time , which is a naturally
defined absolute time 1in closed universeséS, has just this
property of placing the singularities at temporal infinity. In

the extrinsic time scale, a closed universe has existed and will
exist forever; the question of what preceded the Big Bang does not
arise,

6 .
Penrose has suggested 5 that the entropy of the gravitational

field is proportional to "some sultable integrated measure of the
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size of the Weyl curvature," and that this curvature is zero at
the initial singularity, and infinite at the final singularity.
There are indications (e.g. ref.57) that in stable solutions with
the Weyl curvature initially zero, the average Weyl curvature
would increase monotonically with time to the final singularity.
If this is indeed the case, the Penrose gravitational entropy
could be shown to increase from the initial to the final singular-
ity without the use of "coarse-graining", and thus could act as
the ultimate source of all forms of entropy increase.

Because of Poincaré recurrence, it is impossible to define a
monotonically increasing entropy (or any monotonically increasing
function) for non-gravitational fields or systems of particles
in terms of the phase space variables of the fields. However,
since Poincaré recurrence does not hold for gravitational fields,
it is possible to define functions which increase monotonically
with time - such functions are called Lyapounov functionsg'lo -
on the phase space of the gravitational field. In fact, the
extrihsic time, which is proportional to the trace of the extrinsic
curvature of a leaf of a constant mean curvature Cauchy hyper-
surface foliation of spacetime, is just such a function since
the extrinsic curvature is essentially the momentum of the
gravitational fieldj?. and the extrinsic time increases mono-
tonically in closed universes, ranging from - o at the initial
singularity to + « at the final singularity 5. In non-singular
asymptotically flat space, a foliation of constant mean curvature
Cauchy surfaces would have to have extrinsic time constant (= 0).

This supports the conclusion of classical mechanics that isolated
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systems cannot define a time direction,

Niels Bohr 6 together with Prigogine and his co-workers '’
have suggested on the basis of Poincaré recurrence that thermo-
dynamic concepts such as temperature and entropy are comple-
mentary to the phase space variables., In other words, they argue
that a detailed microscopic description of the behavior of a
physical system would preclude the definition of thermodynamic
variables for that system, If the gravitational field (or more
precisely, the global structure of spacetime) is taken into
account, we see that 1t becomes possible in principle to define
the thermodynamic variables and the phase space variables in a
closed universe simultaneously; the notion of complementarity
becomes unnecessary. This leads one to speculate about the
connection between gquantum mechanics and the global structure
of spacetime: perhaps the impossibility of giving a detailed
deterministic microscopic description of a quantum mechanical

system is due to neglect of the global structure of spacetime.
Acknowledgments

I am grateful to J.D. Barrow, S.G. Brush, P.R. Chernoff,
R.0. Hansen, 0.E. Lanford, L. Lindblom, J.E. Marsden, and D.W,
Sciama for helpful discussions. This work was supported by NSF

grant PHY-77-15191.



10.
11.

12.

REFERENCES

Kac, M. Probability and Related Topics in Physical Sciences

(Interscience, London, 1959).

Davies, P.C.W. The Physics of Time Asymmetry (University of

California Press, Berkeley, 1975).

Holton, G. Thematic Origins of Scientific Thought: Kepler

to Einstein (Harvard University Press, Cambridge,

1973).

Holton, G. Science 188, 328 (1975); Merton, R. K. Science
188, 335 (1975).

Brush, S. G. The Kind of Motion We Call Heat: A History

of the Kinetic Theory of Gases in the 19th Century

(North Holland, Amsterdam, 1976). Volume II.

Prigogine, I., George, C., Henin, F. & Rosenfeld, L. Chem.

Scripta &4, 5 (1973).

Prigogine, I., Mayné, E., George, C., de Hann, M. Proc.

Natl. Acad. Sci.USA 74, 4152 (1977).

Uhlenbeck, G.E. in The Physicist's Conception of Nature (ed.

Mehra, J.),p.501(Reidel, Dordrecht, 1973).
Prigogine, I. Science 201, 777 (1978).
Misra, B. Proc. Natl. Acad. Sci. USA, 75, 1627 (1978)

de Santillana, G. and von Dechend, H. Hamlet's Mill: An

Essay on Myth and the Frame of Time (Gambit,

Boston, 1969).

Baillie, J. The Belief in Progress (Oxford University Press,

Oxford, 1950) p. 42.



13.

14,

15.

lo.

17.

18.

19.

20.

21.

22.

23.
24,

25.
26.
27.

29

Eliade, M. The Myth of the Eternal Return (Pantheon,

New York, 1954).

Toulmin, S. and Goodfield, J. The Discovery of Time

(Harper and Row, New York, 1965).

Sorokin, P. A. Social and Cultural Dynamics, Volume II,

(American Book Company, New York, 1937).

Jaki, S. Science and Creation (Scottish Academic Press,

Edinburg, 1974).

Aristotle Problemata, Book XVII, 3.

Plato Timaeus, 39.
Plato Politicus, 269 c.

Needham, J. Time and Eastern Man (Roy. Anthropological

Institute Occasional Paper No. 21, London, 1965).

Thorndike, L. A History of Magic and Experimental Science

During the First 13 Centuries of Our Era,Vol. 2

(Columbia University Press, New York, 1947) pp. 203,
370, 418, 589, 710, 745, 895,

Needham, J. Science and Civilization in China, Vol. 3

(Cambridge University Press, Cambridge, 1960).

Sivin, N. Earlham Review 1, 82 (1966).

Tillich, P. The Protestant Era (University of Chicago Press,

Chicago, 1948); see also Cullmann, O. Christ and Time,

Westminister, Philadelphia, 1950).
Kubrin, D. J. Hist. Ideas 28, 325 (1967).

Murray, J. Trans. Roy. Soc. Edinburgh 7 411, (1815).

Thompson, S. P. The Life of William Thomson, Baron Kelvin

of Largs (Macmillan, London, 1910), p. 111.



28.

29.

30.
31.

32.
33.

34.

35.

36.

37.

38.

39.

40.

30

Brush, S. G. Graduate Journal /, 477 (1967) Footnote 32
(p. 547).

Arrhenius, S. Worlds in the Making: The Evolution of the

Universe (Harper, New York, 1908), p. 193,
Rankine, W. J. M. Phil. Mag. 4, 358 (1858).

Weinberg, S. The First Three Minutes (Basic Books, New York,
1977), p. lbk.

Everett, A. E. Phys. Rev. D 10, 3161 (1974).

Poincaré, H. Acta Mathematica 13, 1 (1890); English

translation in Brush, S. G. Kinetic Theory, volume 2,

Irreversible Processes (Pergamon Press, Oxford, 1966).

Spencer, H. First Principles, 6th Edition (D. Appleton & Co.,

London, 1910) Chapter 23.

Nietzsche, F. Eternal Recurrence in Complete Works of

Friedrich Nietzsche, ed. 0. Levy, volume 16.

(T. N. Foulis, Edinburgh,1910).

Nietzsche, F. The Will to Power, volume 2, Book 4 in

Complete Works of Friedrich Nietzsche, ed. 0. Levy,

volume 15. (T. N. Foulis, Edinburgh, 1910).

Misner, C. W., Thorne, K. S., and Wheeler, J. A. Gravitation

(Freeman, San Francisco, 1973).

Boltzmann, L. Ann. Physik 59, 793 (1896); English trans-

lation in Brush, S. G. (ref. 33) p. 238.
Boltzmann, L. Sitzungsber. Preuss. Akad. Wiss. Berlin

1016 (1897).

Friedmann, A. Zeits. f. Physik lg, 377 (1922).



31

Tolman, R. C. Relativity, Thermodynamics and Cosmology,

(Oxford University Press, Oxford, 1934).
Tolman, R. C. Phys. Rev. 38, 1758 (1931).
Tipler, F. J., Clarke, C. J. S., and Ellis, G. F. R.

Singularities and Horizons, in Einstein Centenary

Volume, ed. A. Held (to be published, 1979).
Wheeler, J. A., in chapter 44 of ref. 37.

Hawking, S. W., and Ellis, G. F. R. The Large Scale Structure

of Spacetime (Cambridge University Press, Cambridge,

1973).

Penrose, R. Techniques of Differentiual Topology in Relativity

(SIAM, Philadelphia, 1972).

Fischer, A. E. and Marsden, J. E. The Space of Gravitational

Degrees of Freedom (preprint, Berkeley, 1977).

Ebin, D. G. "The Manifold of Riemannian Metrics'", in

Proceedings of Symposia in Pure Mathematics,

volume XV: Global Analysis, ed. Chern, S. S. and

Smale, S. (AMS, Providence, 1970).

Feller, W. An Introduction to Probability Theory and Its

Applications, Volume 1, 3rd edition (Wiley, New York,
1968).

Albeverio, S., Ribeiro de Faria, M. and Hgegh-Krohn, R.

Stationary Measures for the Periodic Euler Flow in

Two Dimensions, (preprint, Math. Inst. (Univ. Oslo),

1978).

Choquet-Bruhat, Y., DeWitt-Morette, C., and Dillard-B eick,

M. Analysis, Manifolds, and Physics (North-Holland,

Amsterdam, 1977), p. 514.



52.

53.
54,
55.

56.

57.
58.
59.
60,
61.
62.

63.
6l
65.
66.
67

32

Reichenbach, H. The Direction of Time (University of

California Press, Berkeley, 1971).
Percival, I. C. J. Math. Phys. 2, 235 (1961).

Bocchieri, P. and Loinger, A. Phys. Rev. 107, 337 (1957).

Farquhar, I. E. Ergodic Theory in Statistical Mechanics

(Interscience, London, 1964).,

Penrose, R. in Theoretical Principles in Astrophysics and

Relativity (eds. Lebovitz, N. R., Reid, W. M. and

Vandervoort, P. 0.)(Chicago University Press,
Chicago, 1978).
Barrow, J. D. and Tipler, F. J. Nature 276, 453 (1978).

Gibbons, G. W. and Hawking, S. W. Phys. Rev. D 15, 2738 (1977).

GlaSSey, R-T. J- l“"lat}’l. Phys. Alv\8—' 179}4' (1977).

Levine, H. Trans, Amer, tath. Soc. 192, 1 (1974),

Tipler, F.J. Phys. Rev. D 17, 2521 (1978),

Milne, E.A, Modern Cosmology and the Christian Idea of God

‘ (Oxford University Press, 1952),
Misner, C.W., Phys. Rev. 186, 1328 (1969).
A

York, J.W. Phys. Rev., Lett. 28, 1082 (1972).

Marsden, J.£. and Tipler, F.J. preprint (1978),

Bohr, N. J. Chem, Soc., 349 (1932),

Lebowitz, J.L. and Penrose, O, Physics Today 26, 23 (1973),




/ diographical sketch

" I was born and raised in Andalusia, a small town in southern
Alabama. My interest in physics dates back to my kindergarten
days (circa 1952) when I became fascinated with von Braun's
visions of interplanetary flight. By the time I entered M.I.T.
as an 18 year old freshman in 1965, however, this interest had
metamorphosed_into interest in fundamental physics, with
particular attention to the role of Time in scientific theories.
Graduating frbm M,I.T. in 1969, I became a graduate student in
general relativity at the University of Maryland. I obtained
my Ph.D. in 1976 with a thesis on causality violation (time
travel), and I have held a postdoctoral position in general

relativity at the University of California, Berkeley, since 1976,

Frank J. Tipler



